Streams in an uninhabited watershed have predictably different thermal sensitivities to variable summer air temperatures

Lauren E. Culler1,2,3 | Zachary T. Wood3,4 | Jimena Diaz1,3,5 | Samuel B. Fey6 | Dianne Timmins7 | Matthew P. Ayres2,3

1Environmental Studies Program, Dartmouth College, Hanover, NH, USA
2Institute of Arctic Studies, The Dickey Center for International Understanding, Dartmouth College, Hanover, NH, USA
3Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
4School of Biology and Ecology, The University of Maine, Orono, ME, USA
5Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
6Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
7New Hampshire Fish & Game, Lancaster, NH, USA

Correspondence
Lauren E. Culler, Environmental Studies Program, Dartmouth College, Hanover, NH, USA.
Email: leculler@gmail.com

Funding information
Dartmouth’s Biology Department (the R. Melville Cramer Fund); IGERT Fellowship, Grant/Award Number: 0801490; Institute of Arctic Studies at the Dickey Center for International Understanding; James S. McDonnell Foundation Postdoctoral Fellowship

Abstract
1. Warming temperatures from climate change are altering the distributions and abundances of many species. Aquatic organisms, however, may be buffered from the immediate impacts of air temperature change due to the thermal inertia of water. The extent of this buffering in freshwater ecosystems will determine the fate and possible management strategies for many ecologically and economically important species.

2. Using 11 years of air and stream temperature data collected from an uninhabited New Hampshire watershed, we investigated the relationship between air and water temperature change throughout the summer months. Maximum daily stream temperatures during the summer months are known to influence the distribution and phenology of aquatic organisms. As such, we built a predictive model of maximum daily stream temperature as a function of air temperature change, discharge and stream order.

3. Diurnal changes in stream temperatures and changes in stream temperature through the summer consistently lagged changes in air temperature, and deviations in daily air temperatures from seasonally predicted means were a strong driver of water temperatures. A mean increase in residual air temperature over the past 5 days of 1.0°C corresponded to a 0.5–0.8°C increase in maximum daily stream temperature. Smaller, headwater streams were colder and less sensitive to changes in air temperature.

4. Although stream temperatures did not increase as much as air temperatures, our results suggest that even small increases in water temperatures will extend the duration of physiologically stressful conditions for biota in this watershed. Thus, preserving thermal heterogeneity and unrestricted access to thermal refuges may be key for species’ persistence. We encourage continued use of monitoring data to document within-stream and within-watershed thermal heterogeneity and to generate stream temperature models. These tools will be key for developing management strategies to mitigate the impacts of climate change on streams and their biota.

KEYWORDS
climate change, streams, temperature models, thermal change, thermal heterogeneity
1 | INTRODUCTION

Climate change is altering the ecology of freshwater ecosystems, including changes to the phenology and distributions of aquatic species (e.g., Culler, Ayres, & Virginia, 2015; Domisch et al., 2013; Winder & Schindler, 2004). Increases in water temperature affect the metabolic rates of aquatic organisms (Culler, McPeek, & Ayres, 2014; Gillooly, Brown, West, Savage, & Charnov, 2001) and lead to changes in physiology, behaviour, and mortality (e.g., Araujo, Thuiller, & Pearson, 2006; Dallas & Ross-Gillespie, 2015; Domisch et al., 2013; Lowe & Hauer, 1999; Xu, Letcher, & Nislow, 2010). Many species of invertebrates and coldwater-dependent fish are particularly sensitive to increases in temperature (EBersole, Liss, & Frissell, 2001; Elliott, 1991; Elliott & Elliott, 1995; Garside, 1973; Huntsman, 1942; Lee & Rinnie, 1980; Stewart, Close, Cook, & Davies, 2013), thus giving water temperature both ecological and economic significance (Caisse, 2006). Given the current and projected magnitude of thermal changes occurring globally and that temperatures in some systems have already reached the thermal limits for aquatic organisms (e.g., Comte & Grenouillet, 2013), there is a need for tools to identify and manage thermally threatened aquatic habitats.

As global air temperatures increase and precipitation patterns change, water temperatures and associated factors, such as dissolved oxygen levels, are profoundly affected (Davies, 2010; Morrill, Bales, & Conklin, 2005; Orr et al., 2015). However, most climate warming projections are in units of air temperature increase and are not readily translatable to freshwater environments (Hobday & Lough, 2011). For example, a 2013 NOAA Technical Report for the U.S. National Climate assessment indicated that air temperatures in the north-east U.S.A. are projected to increase by 1.4 to 3.1°C by 2055 (Kunkel et al., 2013), but no such projections are available for water temperatures. Similarly, the most recent Intergovernmental Panel on Climate Change report (AR5 2014) highlights many of the consequences of rising freshwater temperatures in Chapters 3 and 4 of Working Group II (Jimenez Cisneros et al., 2014; Settele et al., 2014), but do not include projections of future water temperature change as they do for air temperatures.

Although water temperatures vary with air temperatures (Cho & Lee, 2012), freshwater systems can exhibit dampened and delayed responses at various spatial and temporal scales to changes in air temperature due to the thermal inertia of water (Erickson & Stefan, 2000). In an analysis of air–water temperature relationships in 43 streams, very few showed a water temperature increase of 1°C for every 1°C increase in air temperatures averaged over daily, 3-day and weekly time periods (Morrill et al., 2005). van Vliet, Ludwig, Zwolsman, Weedon, and Kabat (2011) reported increases in annual mean river temperatures of +1.3, +2.6 and +3.8°C with air temperature increases of +2, +4 and +6°C, respectively. Null, Viers, Deas, Tanaka, and Mount (2013) reported an increase in average annual stream temperature of 1.2–1.9°C for a simulated 2°C increase in average annual air temperature. Isaak et al. (2016) reported warming rates for streams of 0.1°C per decade versus 0.2°C per decade for air temperatures throughout the north-western United States. Thus, stream temperatures will reflect changes in air temperatures from daily to decadal timescales, but often with a reduced amplitude (Morrill et al., 2005).

In addition to air temperature, other factors influence water temperature or modify the effects of air temperature on water temperature. Smaller and headwater streams, depending on their primary source of water, may be more or less buffered from changes in air temperature. If groundwater-dominated, the water in these streams has had less time to exchange heat with the atmosphere and the greater proportion of direct groundwater input versus larger streams would tend to keep them relatively cooler during the summer months (Power, Brown, & Imhof, 1999; Sweeney, 1993). Changes in precipitation patterns that occur alongside changes in temperature, such as more or less precipitation or more falling as snow versus rain, can also modify water levels via effects on overall watershed discharge. Higher discharge, that is, a greater volume of water flowing through a stream system, could affect stream temperature by increasing the amount of groundwater input into streams (Winter, Harvey, Franke, & Alley, 1998). Furthermore, a greater volume of water will be less sensitive to a unit of air temperature increase due to thermal inertia of water. Additional local factors such as stream orientation, riparian vegetation and canopy cover affect the overall amount of short- and long-wave radiation that enters a stream, which, especially for smaller streams, can substantially change stream temperatures (Davies-Colley, Meleason, Hall, & Rutherford, 2009; Rutherford, Blackett, Blackett, Saito, & Davies-Colley, 1997; Rutherford, Marsh, Davies, & Bunn, 2004).

Considerable efforts have been made to build models of air–water temperature relationships (reviewed in Caisse, 2006), but are hindered by inadequate long-term monitoring of stream temperatures (Lough & Hobday, 2011). Additionally, most locations with long-term data are in highly managed or urban areas (Isaak, Wollrab, Horan, & Chandler, 2012), thereby confounding natural relationships between air and water temperature. As the ability to monitor water temperature in conjunction with air temperature has rapidly improved with the development of inexpensive water temperature loggers, we can now use empirical data sets to develop models that relate changes in air temperature to changes in water temperature. These models can be used to identify areas of conservation or management priority, particularly areas that may act as thermal refuges for species that can move out of more thermally stressful or unstable areas (e.g., Berman & Quinn, 1991; Kaya, Kaeding, & Burkhalter, 1977; Sutton, Deas, Tanaka, Soto, & Corum, 2007).

We analysed 11 years of stream temperature data that covered multiple streams within the largest uninhabited watershed in New Hampshire. Our study site is located in the north-eastern U.S.A., which is considered the fastest warming region in the contiguous U.S.A. and is projected to warm by 3°C by the time that global warming reaches 2°C (Karmalkar & Bradley, 2017). First, we characterised how diurnal and daily changes in air temperature throughout the summer corresponded with changes in water temperatures across the watershed. We then built a model that predicts maximum daily stream temperature as a function of air temperature, while also testing for the importance of factors such as stream order and
discharge on water temperatures. We focused on modelling maximum daily stream temperature because of its potential role in shaping the distribution, abundance and phenology of aquatic invertebrates and brook trout in this watershed.

2 METHODS

2.1 Study site and temperature data

We collected temperature data in the Dead Diamond River watershed in northern New Hampshire (44°52′54.3″N, 71°4′8.4″W, Figure 1). This uninhabited watershed contains the last self-sustaining, native, unstocked population of brook trout in New Hampshire and Vermont (Kelson, Kapuscinski, Timmins, & Ardren, 2015). It lies within Dartmouth College’s Second College Grant, a 27,000-acre property characterised by many small (<2 km² drainage) first-order streams of moderate slope (2%-4%). Nislow & Lowe, 2003) that flow into two larger rivers (Figure 1). The forest is composed of mostly Sugar Maple (Acer saccharum), Paper Birch (Betula papyrifera), Yellow Birch (Betula alleghaniensis), American Beech (Fagus grandifolia), Balsam Fir (Abies balsamea) and Red Spruce (Picea rubens).

From 2001 to 2011, we measured hourly water temperatures using Hobo temperature loggers (TidbiT UTBI-001, Onset, Bourne, MA, U.S.A., resolution = 0.02°C at 25°C) at twelve sites (eight water, four air) during June–September. Five of the water temperature sites were within large streams (>3 m wide, >4th order, open-canopy; Gate, Lower Swift, Lower Dead, Upper Swift, Upper Dead; circles 1–5 in Figure 1), and three of the water temperature sites were within small streams (<2 m wide, 1st-3rd order, closed canopy; Alder, Merrill, Loomis Valley; circles 6–8 in Figure 1). Elevations (above sea level) were ~390 m at Gate, ~415 m at Lower Dead and Lower Swift, ~450 m at Upper Swift, ~430 m at Upper Dead and ~430 m at each Alder, Merrill and Loomis Valley. Loggers were placed in the same locations within each stream consistently across the years, always anchored to a brick placed within 2 m of the stream bank and at a depth of 0.5–1.0 m. Loggers were placed in locations where water was running and well-mixed (not in riffles or pools).

We collected additional water temperature data from 28 June to 8 August 2014 to determine the extent of thermal heterogeneity within a stream. On 20 June 2014, we deployed five pairs of HOBO pendant data loggers within the Dead Diamond River (arrows in Figure 1). Loggers recorded stream temperatures at 30-min intervals. Using aforementioned methods, we placed one ‘shallow’ logger within 2 m of the stream bank at a depth of 0.5–1.0 m. We also placed a paired ‘deep’ logger in a nearby (5–10 m horizontal distance) deep pool (1.8–2.2 m depth). We selected site locations with the a priori goal of choosing locations that would maximise within-site spatial thermal variability, assuming that deeper pools would be colder and thus potential thermal refuges for resident coldwater species such as brook trout.

We measured hourly air temperatures at four locations distributed throughout the study area. Hourly shaded air temperatures at 1.5 m height were recorded at Merrill throughout the study and in some years at Airstrip (2002–2007, 2009, 2011–2012), Hellgate (2001–2005, 2007, 2009–2010, 2012) and Johnson (2007–2008, 2012, see Figure 1). In 4 years at Merrill and 3 years at Airstrip, we collected measurements from replicate temperature sensors. The precision of replicate temperature sensors was good: for average daily air temperatures at two sites: r² > .995 and average absolute value of differences between replicates <0.30°C. Air temperatures recorded across our study area indicated a relatively homogenous thermal environment (r² = .94–.98 for six pairwise comparisons among four sites, Table S1). Merrill, which was near the geographic centre, had air temperatures typical of the study area (average difference in mean daily air temperature between Merrill and the other three locations = −0.38 to 0.57°C, Table S1, Figure S1). Compared to records from the two nearest long-term weather stations, air temperatures at Merrill were a bit cooler and well correlated (Figure S2).

In the light of these patterns, we used average daily air temperatures at Merrill, as the independent variable for developing models of stream temperature as a function of air temperature.

From our raw air and water temperature data, for each day between 22 June and 30 September in each year (2001–2011), we
calculated average daily water \(W_{\text{avg}} \) or air \(A_{\text{avg}} \) temperature as the average of the 24 hourly measurements recorded by the temperature loggers. For each water temperature logger (sites 1–8), we also extracted maximum daily stream temperature \(W_{\text{max}} \).

2.2 Diurnal and summer patterns

To summarise the general patterns in air and water temperatures in the Dead Diamond River watershed during the summer months, we fit cosine functions (Equation 1, Figure S3) to the average daily temperatures at each of the nine sites in each year from 2001 to 2011 (PROC NLIN, SAS v.9.3),

\[
W_{\text{avg}}, A_{\text{avg}} = a + b \times \cos \left(\frac{2\pi}{365.25} \times (\text{sol. day} - c) \right)
\]

(1)

and calculated the mean solar day of maximum average daily temperature \(c \) and maximum average daily temperature \(a + b \), as the average across years at each site.

To compare diurnal patterns over the summer, we fit cosine functions (Equation 2, Figure S4) to the hourly temperature data from each of the nine sites \(W_{\text{hour}}, A_{\text{hour}} \) in each year from 2001 to 2011 during four time periods (22–28 June, 22–28 July, 22–28 August and 22–28 September; PROC NLIN, SAS v.9.3),

\[
W_{\text{hour}}, A_{\text{hour}} = a + b \times \cos \left(\frac{2\pi}{24} \times (\text{hour} - c) \right)
\]

(2)

and calculated mean local time of maximum daily temperature \(c \), maximum daily temperature \(a + b \) and daily amplitude \(2b \) as the average across years for each site in each time period.

2.3 Stream–Air Temperature Model

Changes in average daily air temperature \(A_{\text{avg}} \) are driven by the effects of seasonality and changes in weather patterns. We removed the effect of seasonality by calculating an average daily air temperature residual, \(A_{\text{e}} \) (Equation 3), that represented how much the average daily air temperature deviated from what was predicted \(A_{\text{pred}} \) based on seasonality.

\[
A_{\text{e}} = A_{\text{avg}} - A_{\text{pred}}
\]

(3)

\(A_{\text{pred}} \) was calculated using the parameters from a sine function (Equation 4) fit to average daily air temperatures \(A_{\text{avg}} \) as a function of solar day \(S \) across all years (likelihood v.1.5, R):

\[
A_{\text{avg}} = a + b \times \sin \left(\frac{2\pi}{365.25} \times (S - c) \right)
\]

(4)

The parameters \(a = 4.4 \), \(b = 12.3 \) and \(c = 136 \) were subsequently used to calculate \(A_{\text{pred}} \) for each solar day.

Although the focus of our study was developing a model relating deviations in air temperatures \(A_{\text{e}} \) to maximum daily stream temperatures \(W_{\text{max}} \), we included a few additional components that could potentially improve the model (see Introduction), including stream order as a categorical variable (high for sites 1–5; low for sites 6–8) and daily measurements of discharge \(D \). Daily discharge data from the Dead Diamond River watershed were downloaded from www.waterdata.usgs.gov (site 01052500) and log-transformed before use in the model. These daily measurements were taken at a location approximately 500 m upstream from site 1 (Gate, see Figure 1) and thus integrate changes in discharge across the studied watershed. Lastly, we included solar day \(S \) in the model to account for seasonal variation in stream temperatures (Caisse, 2006; see Table S2).

Changes in water temperature often lag changes in air temperature due to thermal inertia of water (Erickson & Stefan, 2000) so we also developed a function that would allow us to evaluate the significance of mean daily air temperatures in the previous days in explaining maximum daily stream temperature. We used the function,

\[
A_{\text{RW}} = \sum_{q=1}^{3} \left(A_{\text{e}}(q) \times x^q \right) / \sum_{q=1}^{3} (x^q)
\]

(5)

to calculate a mean daily air temperature residual, \(A_{\text{RW}} \), over the past \(y \) days (from \(x = 1 \) to \(x = y \) days), where \(A_{\text{e}} \) is the deviation in daily air temperature from the seasonally predicted mean on a given solar day \(S \) and \(q \) is the decay factor. If \(q = 0 \), then each previous day’s air residual was equally important as today’s. If \(q = 1 \), then yesterday’s was half as important as today’s, and 2 days ago was one-third as important, etc. Increasing \(q \) decreases the importance of days in the past. If \(q \approx \infty \), then only today’s air residual was important. \(q \) was optimised for high and low stream orders (see below), and a range of values for \(y \), that is, the number of previous day’s air temperatures included in the model, was tested. The numerator is the sum of the weighted values and the denominator is the sum of the weights, leaving a weighted average daily air temperature residual \(A_{\text{RW}} \) over the past \(y \) days (see Table S2). An \(A_{\text{RW}}(y = 5) \) value of 1 indicates that residual air temperatures were 1°C greater than predicted by seasonality over the past 5 days.

We used maximum-likelihood methods to estimate the parameters of the model relating maximum daily stream temperature \(W_{\text{max}} \) to all possible effects and interactions of weighted air residuals over the past 5 days \(A_{\text{RW}, y = 5} \), discharge \(D \) and solar day \(S \). Each parameter was separately estimated for high- and low-order stream data, nested within one master model (likelihood v.1.5, R). We created a series of models, each of which had one effect or interaction removed. To analyse parameter contribution to model fit, we used a chi-square test on the relative likelihood of the model with versus without each effect or interaction term. We sequentially removed non-significant terms \((p > .05) \)—beginning with the term with the greatest \(p \) value and updating the model after each removal—until all remaining terms were considered significant \((p < .05) \). We confirmed that the removed terms were still non-significant when added back into the reduced model. After reducing the model, we varied \(y \) in Equation (5) from 1 to 15 and calculated the AICc and root mean square error (RMSE) for each iteration to determine how adding more days from the past affected model fit.

To visualise the master model and any main or interactive effects of \(A_{\text{RW}}, \) discharge and solar day, we conducted sensitivity analyses.
We calculated how a sustained 5-day change in air temperature residuals by one standard deviation would change maximum daily water temperatures (at mean levels of discharge), and, conversely, how a one standard deviation change in discharge would change water temperatures (if air temperatures were not deviating from the seasonally predicted daily means).

3 | RESULTS

Sampling of within-site stream temperatures indicated that the water was generally well-mixed and that thermal heterogeneity was minimal. Only 2.3% of the 14,790 paired temperature observations collected in 2014 revealed within-site differences greater than 1°C. Within a location, mean differences between shallow and deep loggers were all less than 0.25°C (Figure S5). We never observed mean within-site differences in temperature of more than 1°C, and there was no pattern of shallow sites tending to be warmer than deep sites (Figure S6).

3.1 | Summer patterns

When averaged across all years, air and water temperatures peaked in July with a 9-day lag in maximum daily water temperatures (maximum air: 17 July, maximum water: 26 July; Table 1). The average maximum air temperature was 16.8°C. Average maximum summer stream temperatures were 18.9°C and 14.6°C for high- and low-order streams, respectively (Table 1).

3.2 | Diurnal patterns

On a daily scale, air and water temperatures were lowest just before sunrise and then increased during the day (Figure S4). Similar to the seasonal patterns, water temperatures reached their daily peak after air temperatures (local hour 17:45 for water versus local hour 15:30 for air, see Table S3, Figure S4). Maximum daily air temperatures were generally higher or equal to maximum daily stream temperatures in higher order streams (Table S3). Lower order streams had considerably colder maximum daily stream temperatures (13.9°C averaged across all months) versus the higher order streams (18.4°C averaged across all months, Table S3). The daily amplitude in temperature was fairly consistent across the season, but was highest for air, which had an amplitude of 8.2°C (Table S3). High-order streams had a daily amplitude of 3.2°C, but some streams had considerably more than others. For example, daily amplitude in the Lower Dead was only 1.2°C compared with 4.3°C in the Lower Swift. The low-order streams had a daily amplitude on average of 1.5°C, but Merrill Brook only varied by about 0.9°C every day, whereas Alder varied by about 2.0°C. Loomis Valley was intermediate with an amplitude of 1.5°C (Table S3).

3.3 | Modelling stream temperature

Changes in mean daily water temperatures (Wavg) corresponded with changes in mean daily air temperature (Aavg), but water temperatures often continued to increase a day or more after air temperatures positively deviated from predicted seasonal temperatures (e.g., Figure 2). Average daily water temperatures in the larger streams tended to be higher than average daily air temperatures (Figure 2) due to the high amplitude in daily air temperatures (Table S3); that is, although maximum daily air temperatures exceeded those of the stream (see Figure 2 inset), air temperatures also decreased significantly at night, thereby lowering the calculated average daily air temperature (Figure 2).

<table>
<thead>
<tr>
<th>Site</th>
<th>Stream order</th>
<th>Max. summer temp (°C)</th>
<th>Date of peak (Mean)</th>
<th>SE (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>n/a</td>
<td>16.8</td>
<td>17 July</td>
<td>3</td>
</tr>
<tr>
<td>Gate</td>
<td>High</td>
<td>19.3</td>
<td>25 July</td>
<td>2</td>
</tr>
<tr>
<td>Lower Swift</td>
<td>19.4</td>
<td>26 July</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lower Dead</td>
<td>19.4</td>
<td>26 July</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Upper Swift</td>
<td>17.7</td>
<td>26 July</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Upper Dead</td>
<td>18.7</td>
<td>27 July</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Merrill</td>
<td>Low</td>
<td>14.4</td>
<td>27 July</td>
<td>2</td>
</tr>
<tr>
<td>Alder</td>
<td></td>
<td>14.7</td>
<td>24 July</td>
<td>3</td>
</tr>
<tr>
<td>Loomis</td>
<td></td>
<td>14.7</td>
<td>28 July</td>
<td>3</td>
</tr>
</tbody>
</table>
Within the master model (Table 2), maximum daily water temperature (W_{max}) of low-order streams was predicted using the 5-day weighted residual mean air temperature, discharge, solar day and an interactive effect between the 5-day weighted residual mean air temperature and discharge ($R^2 = 0.95$, RMSE = 0.7, Table 2, see Table S2 for sample calculation). The sensitivity (increase in °C) of maximum daily water temperature in low-order streams per 1.0°C increase in residual air temperatures (A_{res}) over the previous 5 days was 0.58 at mean levels of discharge (~3.8 m3/s), 0.65 at high levels (~15.8 m3/s) and 0.53 at low levels (~1.1 m3/s; Figure 3). At mean levels of discharge, a sustained 5-day increase in air temperature residuals by one standard deviation (3.1°C) would increase maximum daily water temperature by 1.8°C. By comparison, a one standard deviation increase in discharge (6.5 m3/s) would decrease water temperatures by only 0.1°C.

For the high-order streams, maximum daily water temperature (W_{max}) was a function of the 5-day weighted residual mean air temperature and solar day, in addition to all two-way and the three-way interaction ($R^2 = 0.92$, RMSE = 1.6, Table 2, see Table S2 for sample calculation); that is, maximum daily stream temperature varied with residual air temperatures, but the relationship was modified by discharge and solar day (Figure 3). In these streams, W_{max} increased by a maximum of 0.81°C per 1°C increase in 5-day residual air temperature, but this relationship changed based on solar day, discharge and interactive effects between solar day and discharge (see Figure 3 for visualisation of how main effects and interactions affect sensitivity). At mean levels of discharge, a sustained 5-day increase in air temperature residuals by one standard deviation (3.1°C) would increase maximum daily water temperature by 2.3–2.5°C depending on solar day (Table 3). Discharge was markedly more influential in large streams than small streams: a one standard deviation increase in discharge (6.5 m3/s) would decrease water temperatures by 1.5–1.9°C (Table 3).

In a subsequent analysis of the model residuals, there was no apparent effect of day-to-day variation in photosynthetically active radiation (PAR, sunny days versus cloudy days) on water temperatures, even though PAR ranged by over fourfold, from <10 to >40 moles m$^{-2}$ day$^{-1}$ (measured using Licor Quantum sensors in an open-canopy field at the Airstrip during the summers of 2002, 2003, 2004, 2005 and 2008, Figure 1; Figure S7). There was only a weak positive relationship between PAR and summer air temperatures ($y = 14.0 + 0.047 \times \text{PAR}; r^2 = 0.03$).

Increasing the number of previous days of air temperature residuals (γ, Equation 5) improved the model fit, more so for the small than for the large streams (Figure S6). γ in Equation 5 was estimated as 1.4 (± 0.03); that is, yesterday’s mean air temperature residual was less than half as important as today’s mean air temperature residual.

Table 2

Parameter coefficient estimates and standard errors (SE) for maximum-likelihood models predicting maximum daily stream water temperature in high- and low-order streams. *Air temp. (A_{res})* is a function that weights residual air temperature (in °C) over the past 5 days (Equation 5); *Discharge* (D) is natural-logarithm transformed discharge (m3/s); and *Seasonality* $g(S)$ is a sine function related to solar day (S) (see eq. ii in Table S2). χ^2 and p values are for the likelihood ratio test when each parameter was removed, performed on one degree of freedom. See Table S2 for example calculations of how to use the models.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low order</th>
<th></th>
<th></th>
<th></th>
<th>High order</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate ± SE</td>
<td>χ^2</td>
<td>p</td>
<td>Estimate ± SE</td>
<td>χ^2</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>6.1 ± 0.08</td>
<td>2.150</td>
<td><.0001</td>
<td>7.4 ± 0.1</td>
<td>5.810</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{res}</td>
<td>0.5 ± 0.009</td>
<td>7.030</td>
<td><.0001</td>
<td>0.4 ± 0.04</td>
<td>16.0 ± 0.1</td>
<td>6.150</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>$\ln(D)$</td>
<td>0.1 ± 0.01</td>
<td>7.030</td>
<td><.0001</td>
<td>0.08 ± 0.02</td>
<td>12.6</td>
<td>.00038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(S)$</td>
<td>9.2 ± 0.08</td>
<td>7.030</td>
<td><.0001</td>
<td>0.4 ± 0.06</td>
<td>8.430</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{res}} \times \ln(D)$</td>
<td>0.05 ± 0.006</td>
<td>67.0</td>
<td><.0001</td>
<td>-1.9 ± 0.03</td>
<td>1.180</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{\text{res}} \times g(S)$</td>
<td></td>
<td></td>
<td></td>
<td>-0.08 ± 0.03</td>
<td>6.49</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln(D) \times g(S)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3 The sensitivity (increase in °C) of maximum daily water temperature to a 1.0°C increase in residual air temperatures (A_{res}) over the previous 5 days ranged from 0.5 to 0.8°C depending on date (x-axis), stream order (high order = black lines; low order = grey lines) and discharge (average discharge = solid lines; 10% discharge = dotted lines; 90% discharge = dashed lines) (>40 moles m$^{-2}$ day$^{-1}$ (measured using Licor Quantum sensors in an open-canopy field at the Airstrip during the summers of 2002, 2003, 2004, 2005 and 2008, Figure 1; Figure S7). There was only a weak positive relationship between PAR and summer air temperatures ($y = 14.0 + 0.047 \times \text{PAR}; r^2 = 0.03$).

Increasing the number of previous days of air temperature residuals (γ, Equation 5) improved the model fit, more so for the small than for the large streams (Figure S6). γ in Equation 5 was estimated as 1.4 (± 0.03); that is, yesterday’s mean air temperature residual was less than half as important as today’s mean air temperature residual.

4 DISCUSSION

Our results showed a fundamental relationship between air and water temperatures in the Dead Diamond River watershed. This
enabled a predictive understanding of how air temperatures alter stream temperatures at daily and seasonal timescales. Many of the observed patterns, such as the time lags of changes in water temperature behind changes in air temperature, reflect the thermal inertia of water; that is, it takes more energy per unit volume to raise the temperature of water versus air. For this reason, we found that stream temperatures increased by less than 1°C for every 1°C increase in air temperatures above the seasonal norms. Somewhat surprisingly, we found no indication that day-to-day variation in photosynthetically active radiation (PAR), for example sunny versus cloudy days, had a meaningful impact on water temperatures in our system. Instead, the main driver of summer stream temperatures in this watershed was air temperature, with additional patterns related to stream discharge.

4.1 Drivers of stream temperature in an uninhabited watershed

Changes in daily water temperatures corresponded with deviations of air temperatures from seasonally predicted daily means (Figure 2), which is consistent with other studies that show air temperature is a prominent driver of stream temperature (e.g., Isaak et al., 2012). The results from our model indicated that an increase of 1.0°C in residual mean air temperature over the past 5 days corresponded with an increase in maximum daily stream temperature by 0.53–0.81°C. Including previous days’ air temperature deviations improved the model, as is typical for models of air and water temperatures (Preud’homme & Stefan, 1993; Webb & Nobilis, 1995). However, the reduction in root mean square error by including 5 days versus just the current day was only ~0.1 or 0.2°C for the large and small streams, respectively. This difference may be biologically negligible, and thus, the additional data, although they improved the model fit (Figure S8), may not be necessary depending on the intended use of the model.

The relationship between air and water temperature was strengthened with basic knowledge about the size and order of the study streams within the watershed. Maximum daily stream temperature in the larger, higher order streams (sites 1–5) corresponded with changes in residual mean air temperature more strongly than lower order streams; that is, the slopes were higher in the high-order streams across all levels of discharge and solar day (0.65–0.81°C for every 1.0°C increase in residual mean air temperatures). Similar estimates have been found in non-groundwater-dominated streams in Minnesota (slope = 0.82) and Oklahoma (slope = 0.80, Erickson & Stefan, 2000). Groundwater-dominated streams, such as Alder, Merrill and Loomis Valley, had lower slopes than larger streams (0.53–0.65°C for a 1.0°C in residual mean air temperature), similar to what was calculated in a groundwater-dominated stream in England (slope = 0.61°C, Mackey & Berrie, 1991). The lower slope relative to the larger streams is likely due to greater proportions of relatively cool groundwater input that help to cool summer water temperatures (Power et al., 1999) and greater canopy cover that absorbs incoming radiation and reduces heat transfer to the stream (Davies, 2010; Davies-Colley et al., 2009; Lough & Hobday, 2011; McCullough et al., 2009; Rutherford et al., 2004).

Including daily measurements of discharge improved the model and highlighted some general conclusions related to concomitant changes in temperature and precipitation. Across all streams, higher discharge decreased maximum daily stream temperature. This was particularly pronounced in the larger streams, where a heavy rain event would cause greater amounts of cold ground water to flush into the channel, lowering stream temperatures by over 1°C (versus 0.1°C in the small streams). Under ambient conditions, smaller streams already receive a greater proportion of groundwater input; thus, increasing discharge has less of a direct effect. However, high levels of discharge increased the sensitivity of stream temperatures to changes in air temperatures, particularly in the small streams (Figure 3). Cooling water temperatures from high discharge would increase the temperature gradient between air and water, thus affecting how much a one degree increase in residual air temperatures would change stream temperature on a given day. In the small streams, this may be particularly pronounced because temperatures are already colder and it is a smaller volume of water. Conversely, low levels of discharge, representative of drought conditions, will result in higher water temperatures that are less sensitive to increases in air temperature because of a decreased thermal differential.

Similar to other studies (van Vliet et al., 2011), we found that the impacts of discharge on stream temperatures were less than the effects of changes in air temperature (see Table 3). Nonetheless, if precipitation increases (Karmalkar & Bradley, 2017), this could potentially buffer some of the increases in water temperature that will follow increases in air temperature due to the cooling effect of groundwater input. However, an increase in drought frequency, as is also predicted for New England (Frumhoff, McCarthy, Melillo, Moser, & Wuebbles, 2007; Hayhoe et al., 2007), may exacerbate the effects of rising air temperatures on water temperature (Mosley, 1983).

4.2 Biological consequences of the air–water temperature relationship

Forecasting the response of freshwater organisms to warming requires connecting local physical conditions with key physiological
and ecological processes. When air temperatures were warmer than average in July (the warmest month of the year), we measured stream temperatures that surpassed levels known to cause physiological and behavioural responses in stream organisms. In the large rivers, 38% of our hourly temperature observations in July were above 20°C (Figure S9). These temperatures are known to cause thermal stress and increased mortality in brook trout (Trumbo et al., 2014; Xu et al., 2010). Furthermore, mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera), which are common in this watershed (Culler and Ayres, personal observations), are known to be particularly sensitive to temperatures between 20 and 25°C (reviewed in Stewart et al., 2013; Rogowski & Stewart, 2016; Sweeney, Funk, Camp, Buchwalter, & Jackson, 2018). For example, mayflies experience mortality at sustained temperatures as low as 20.5°C (Stewart et al., 2013) and the mortality of caddisflies in shaded mountain streams in Costa Rica increased with temperatures above 22.3°C (Rogowski & Stewart, 2016). Although temperatures in our streams reached the upper lethal levels for some taxa, diurnal patterns in stream temperatures (Figure S4) likely prevent sustained exposure with lethal consequences.

Beyond direct mortality from high temperatures, we anticipate that warming events will have pronounced sub-lethal effects on stream ectotherms (Dallas & Ross-Gillespie, 2015), including those taxa with broad and high thermal tolerances (e.g., Coleoptera and Odonata, see Stewart et al., 2013). For fish, there are significant energetic costs associated with the behavioural response of searching for a thermal refuge (Selong, McMahon, Zale, & Barrows, 2001). This may be particularly true in our watershed, where the lack of within-stream thermal heterogeneity may require the native brook trout to move considerable distances. For aquatic insects, exposure to elevated but sub-lethal temperatures can alter their body size (e.g., Atkinson, 1995; Sweeney et al., 2018) as well as their growth rates (e.g., Culler et al., 2014; Sweeney et al., 2018), phenology (e.g., Culler et al., 2015; Harper & Peckarsky, 2006; Ross-Gillespie, 2014) and fecundity (e.g., Vannote & Sweeney, 1980; Sweeney & Vannote, 1981; Giberson & Rosenberg, 1992; Elliott, 2013; see Dallas and Ross-Gillespie (2015) for a review of sub-lethal temperature effects on aquatic insects). Taken together, lethal and sub-lethal impacts of temperature help explain why strong associations are found between stream temperatures and community composition (Chinnayakanahalli, Hawkins, Tarbton, & Hill, 2011; Friberg et al., 2009; Lowe & Hauer, 1999; Sweeney & Vannote, 1978).

As air temperatures are predicted to increase in the north-eastern U.S.A. (Horton et al., 2014; Karmalkar & Bradley, 2017), we expect that increased occurrences of high water temperatures will have consequences for both community composition and stream ecosystem function (Kuemmerlen et al., 2015; Pyne & Poff, 2016; Woodward, Perkins, & Brown, 2010). Currently, our smaller streams rarely exceed thresholds for taxa intolerant of water temperatures >20°C (Figure S9, Stewart et al., 2013) because their volume is comprised of a high proportion of ground water that keeps both the mean temperature and amplitude of temperature fluctuations low (Mackey & Berrie, 1991). Groundwater temperatures in the Dead Diamond River watershed peaked at around 12.2°C in August (M. Ayres, unpublished data), and daily maximum groundwater temperatures were relatively stable, only varying between 9.3 and 12.3°C throughout the summer months. Thus, these habitats will be increasingly important for maintaining populations of thermally intolerant invertebrates and providing thermal refuges for fish that may otherwise have little access to thermal heterogeneity within the larger rivers.

4.3 Implications for management

Documenting and preserving a diversity of natural stream habitats, including pools and areas with large amounts of groundwater inflow (Dugdale, Bergeron, & St-Hilaire, 2013, 2015; Kurylyk, MacQuarrie, & Voss, 2014); preventing deforestation and flow alteration; and ensuring unrestricted movement of fish and invertebrates can help maintain thermally suitable habitats required by many cold stenothermic stream biota. Conservation of headwater and smaller streams in particular is important, because, in addition to providing thermal heterogeneity, any changes to the thermal characteristics of smaller streams will be integrated in downstream habitat. Over time, increases in air temperatures will lead to changes in groundwater temperature (Caissie, 2006) that will impact the thermal characteristics of microrefuges and smaller streams. Although this is predicted to take decades (Deitchman & Loheide, 2012), monitoring groundwater temperature in conjunction with stream and air temperature can eventually lead to predictive stream temperature models that can incorporate these longer-term lagged effects.

Thermally suitable habitats in rivers are increasingly threatened by anthropogenic activities such as deforestation (Beschta, 1997; Brown & Krygier, 1970; Johnson & Jones, 2000), flow alteration (Morse, 1972; Sinokrot & Gulliver, 2000) and climate change (Schindler, 2001; Sinokrot, Stefan, McCormick, & Eaton, 1995). In addition to increases in air temperature, climate change is altering precipitation patterns that can potentially affect the ability of a stream to buffer changes in air temperature. Our results indicate that within a watershed, streams differ in their sensitivity to changes in air temperature based on stream size and discharge. Furthermore, it is possible to generate useful models that can identify stream habitat within a watershed that should be of conservation and management priority using data that are relatively easy and inexpensive to collect. We encourage continued monitoring of stream temperatures at the watershed scale, and multidisciplinary team efforts to fully address the conservation of ecologically and economically important aquatic natural resources.

ACKNOWLEDGMENTS

This project was made possible with funding from Dartmouth’s Biology Department (the R. Melville Cramer Fund), an IGERT Fellowship to LEC (NSF award 0801490), the Institute of Arctic Studies at the Dickey Center for International Understanding at Dartmouth and a James S. McDonnell Foundation Postdoctoral Fellowship to SBF. We...
thank Kevin Evans and Lorraine Turner at Dartmouth’s Second College Grant for their cooperation and access to field sites and research facilities. We also thank Kathy Cottingham, Mark McPeek, Ross Virginia, Alex Huryn, Keith Fritschie, the anonymous reviewers, and the Freshwater Biology editors for providing invaluable feedback on this manuscript.

ORCID
Lauren E. Culler http://orcid.org/0000-0003-2300-5405

REFERENCES

millennium. Canadian Journal of Fisheries and Aquatic Sciences, 58, 18–29. https://doi.org/10.1139/f00-179

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Culler LE, Wood ZT, Diaz J, Fey SB, Timmins D, Ayres MP. Streams in an uninhabited watershed have predictably different thermal sensitivities to variable summer air temperatures. Freshwater Biol. 2018;00:1–11. https://doi.org/10.1111/fwb.13105